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We use the algorithm recently introduce by A. Berretti and A. D. Sokal to com- 
pute numerically the critical exponents for the self-avoiding random walk on the 
hexagonal lattice, We find 

= 1.3509 • 0.0057 _+ 0.0023 

v = 0.7580 • 0.0049 • 0.0046 

c~ = 0.519 _ 0.082 _ 0.077 

where the first error is the systematic one due to corrections to scaling and the 
second is the statistical error. For the effective coordination number /z  we find 

/~ = 1.84779 • 0.00006 • 0.0017 

The results support  the Nienhuis conjecture y =43/32  and provide a rough 
numerical check of the hyperscaling relation dv = 2 -  ~. An additional analysis, 
taking the Nienhuis value of # = (2 + 21/2) 1/2 for granted, gives 

7 = 1.3459 + 0.0040 • 0.0008 

KEY WORDS: Self-avoiding walk; critical exponents; Monte  Carlo. 

1. I N T R O D U C T I O N  

The study of random walks, both ordinary and self-avoiding, has gained 
great interest. The behavior of a single ordinary random walk (ORW) is 
well understood, but the intersection properties of two or more ORWs are 
highly nontrivial. (l,lm7,1s) 
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Symanzik (23) introduced a representation of continuum field theory in 
terms of random walks, and this idea proved very fruitful. This represen- 
tation was later adapted to lattice field theory by Brydges et al. (6) These 
representations involve walks with rather complicated (and nonlocal) 
weight factors, which are neither ordinary nor precisely self-avoiding. The 
Symanzik-Brydges-Fr6hlich-Spencer representation has been used to 
obtain useful rigorous inequalities, (3'5-7'12) which imply, among other 
things, the triviality of q~4 field theory for d >  4, (1'3'12) and the nontriviality d 
of q~4 field theory for d <  4. (5,7,8) 

Self-avoiding walks (SAW) were first studied as models for organic 
polymers. De Gennes (13'54) first discovered, in perturbation theory, that 
SAWs are equivalent to the field theory obtained as the N ~  0 limit of 
O(N) model. Later, it was shown that the SAW also arises as the N ~  0 
limit of the Symanzik random-walk representation of the O(N) model. (3) 
Some rigorous results on closely related models can be found in Refs. 9 and 
16. 

On a less rigorous level, the SAWs are used to test theories of critical 
phenomena. Using the N ~ 0 limit equivalence, Nienhuis ~19) obtained very 
beautiful results for the critical exponents of thermodynamic quantities for 
the SAW on the hexagonal lattice. Other methods include extrapolation of 
exact enumeration results for short chains (~5) and renormalization group 
methodsJ m) Finally, Berretti and Sokal (4) introduced a very efficient Monte 
Carlo algorithm to generate SAWs. They used it to calculate critical 
exponents, describing their error analysis in detail in Ref. 4. 

In this paper, we use the algorithm introduced by Berretti and Sokal 
to generate the SAW on the hexagonal lattice (very often called a 
honeycomb in the literature). Although their algorithm is described briefly 
in Section 2, the interested reader is referred to their very detailed paper, 
since the discussion about estimating statistical and systematic errors is not 
reproduced here. 

Our choice of the hexagonal lattice was dictated by the following con- 
siderations: 

1. Nienhuis, under some plausible assumptions, obtained results on 
the effective coordination number # and the critical exponents 7 and v for 
the hexagonal lattice thanks to the low value of the coordination number 
(q = 3) for this specific lattice. However, no direct simulation has perfor- 
med to test the plausibility of Nienhuis' conjecture. 3 

2. The more difficult parts in a numerical experiment are the data 
analysis and the correct estimation of errors. However, here we have two 

3 Nienhuis' value for # has very recently been confirmed by an exact solution of Baxter (to 
appear in J. Phys. A). However, this work does not shed any light on 7 and v. 
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alternative approaches. First, we can ignore completely the prediction for # 
and perform a maximum likelihood estimate for both # and 7 from the 
experimental data. Second, we can take for granted the value of # and use 
it as input to extract the value of the critical exponent 7 from the data. 
Both approaches are used and the results are compared. 

3. Our ultimate goal is to check the hyperscaling relations in three 
dimensions, which involve two other critical exponents c~ and A 4. Here we 
try to measure c~ in two dimensions and check the first of these relations, 
dv = 2 - ~ .  It is still an open question whether the second hyperscaling 
relation, which is almost rigorously established in two imensions, fails in 
three dimensions. Hence, besides the interest per se of the present 
simulation for checking the correctness of the Nienhuis conjecture, this 
relatively easy case provides a consistent check of our methodology. 

In Section 2 we describe briefly the algorithm use and give the details 
of the simulation. In Section 3, the method of data analysis is described and 
the results are presented, In Section 4, the results are compared with the 
literature and some considerations for further developments are given. 

2. T H E  A L G O R I T H M  

Let q denote the coordination number (q = 3 for the hexagonal lat- 
tice). Fix a real number /~, called the monomer activity, for reasons that 
will become apparent later. Then, the algorithm ~4) (see Ref. 20 for a dis- 
tinct, but closely related algorithm) goes as follows: 

Start from the walk of length L = 0  (empty walk) anchored at the 
origin. Repeat many times: 

Choose a random number r uniformly distributed in [0, 1] and com- 
pare this number with r o = (1 + qfl)-l. 

i f  r > ro 
then choose with probability 1/q one of the q a priori possible 

directions and try to append a bond in this direction; 
if the corresponding walk is self-avoiding 

then effectively append the bond; 
else consider the previous walk once more; 

else try to delete the last bond; 
/f the initial walk is empty 

then consider the empty walk once more; 
else effectively delete the last bond. 

The elementary moves of the algorithm are thus extremely simple. Clearly, 
this algorithm produces SAWs starting at the origin and ending anywhere 
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on the lattice. Let c L denote the number of such SAWs with length L and 
let Z(fi) be the corresponding grand partition function at monomer activity 
fi, i.e., 

Z(/?)= ~ fl%L (2.1) 
L = 0  

It is easy to show that the elementary moves of the algorithm satisfy 
the detailed balance condition and that the algorithm is ergodic. Hence, it 
admits (2.1) as its unique equilibrium probability distribution. 

There exists a positive real fi~. for which the mean length ( L )  com- 
puted from (2.1) diverges. Hence, for fl---, fl~., very long chains i.e., L ~ o% 
are very probable. Scaling behavior is expected for L ~ 0o. To be precise, 
cL is believed to behave as 

cL ~ #CL~- 1 for L ~ oo (2.2) 

where # is the effective coordination number. The Cartesian end-to-end dis- 
tance rL [defined precisely in Eq. (2.6) below] is believed to behave as 

( r L )  ~ L  ~ for L--* oe (2.3) 

The number cL(x) of walks of length L starting at the origin and ending at 
x is believed to behave as 

cL(x) ~ #/"L" 2 for L ~ oe (2.4) 

It should be stressed that the fi dependence of the problem is fully specified 
in (2.1), and that cL, rL, etc., are purely geometrical constants. 

In relations (2.2) and (2.3), 7 and v are critical exponents. The num- 
bers # and v have a very simple intuitive interpretation, which can be 
clarified by comparison with ordinary random walks. For  an ordinary ran- 
dom walk all q directions are equally probable for appending a bond at the 
end of the walk. Hence, in that case we must have #--  q. Here, due to the 
self-avoidance condition, there is a kind of self-repulsion of the walks. On 
the average, there are # < q (actually # < q - 1 )  possible directions for 
appending a bond; hence, # is called the effective coordination number. 
Similarly, for an ordinary random walk, the exponent v has the well-known 
value 1/2 (drunkard walk). On the other hand, for a deterministic walk, v 
must have the value 1. Here, the value of v must interpolate between these 
two extreme values. 

The mean length can be computed from (2.1) and (2.2) and is given by 

(L)~fl,_fl as ill'tic (2.5) 
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This relation exhibits the divergence of < L )  mentioned at the beginning of 
this section. 

The only relevant feature of the hexagonal lattice for that simulation is 
its topology uniquely characterized by its coordination number. Hence, we 
used a mapping of the hexagonal lattice to a rectangular one with the same 
coordination number, as shown in Fig. 1. This trick saves computing time 
by handling computer integers instead of floating point coordinates. The 
Cartesian distance r in terms of integer coordinates x and y is expressed 
easily by the following formula: 

r = (3x2 + {~-y - � 8 9  y) mod 2] }2),/2 (2.6) 

In order to test the self-avoidance condition, a site occupation map was 
stored in memory, i.e., a 1024x 1024 bit matrix. Each matrix element 
corresponds to a point of the rectangular lattice of Fig. l and is set to 0 or 
1 according to the nonoccupation or occupation of the corresponding site. 
The occupation map is updated at every Monte Carlo step. The essential 
advantage of this method is that testing the self-avoidance condition needs 
a short time independent of the actual length L of the walk. 

Computers used for this simulation include an Olivetti PC without 
math-coprocessor programmed in assembly language, a Norsk-Data 500, 
and the CRAY-1S at CCVR near Paris, programmed in FORTRAN. The 
mean time for an elementary step of the algorithm is 2.3/~sec on the 
CRAY-1S, 60/lsec on the Norsk-Data, and 85/lsec on the Olivetti PC. 

The main run was performed at fl = 0.54 and the mean length found to 
be 635 at that monomer activity. The price to pay for being so close to the 
critical activity is that the autocorrelation time is very large. Berretti and 
Sokal (4) observed that the autocorrelation time for the square lattice 
behaves as v ~ 5<N> 2. If a similar behavior holds for the hexagonal lattice, 
the autocorrelation time must be 2 x  106. Sokal and Thomas (22) have 

D 

Fig. 1. The mapping of the hexagonal into the rectangular lattice. 
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recently proven that the autocorrelation time for the hexagonal lattice must 
behave as "c~>5.81(N) 2. It proved extremely difficult to determine this 
quantity from our data in order to decide how sharp is the bound found by 
Sokal and Thomas(22); in any case, r > 106. 

We performed 10,146,120,000 iterations and data for the coordinates 
of end points and length of the walk were stored on disk every 30,000 
iterations, thus giving 338,204 records. We used periodic boundary con- 
ditions, but the map matrix was so huge that it is highly unlikely that the 
walk touched the boundary even once during the 101~ iterations. During all 
the subsequent analysis the first 38,024 records were always discarded. This 
corresponds to approximately 600 autocorrelation times; hence, the system 
may be considered as having reached thermal equilibrium. 

3. D E T E R M I N A T I O N  OF THE CRIT ICAL EXPONENTS 

In analyzing the data, we followed the article of Berretti and Sokal. (4} 
We used their method to determine the critical exponents. In all subsequent 
analysis when we have to estimate probabilities p(C) for a condition C we 
estimate it by sample probabilities 

p(C)= Is(c)l/Isl (3.1) 

where S(C) is the subset of the sample S satisfying condition C and [-1 
denotes cardinality. 

3.1. Est imating the Exponent v 

The relation (2.3) is expected to hold only asymptotically for L ~ oo. 
However, in any computer experiment L is finite; hence (2.3) is only 
approximately valid. Some corrections to scaling must be taken into 
account. The deviations from exact scaling were taken into account by 
using one of the following forms: 

log((r2)+kl)=a+2vlog(L+k2) for L>Lmi n (3.2) 

o r  

log((r~)+k'lL2V~ for L > L m i  n (3.3) 

Here, ( r~ )  is the observed mean value of r 2 for chains in the sample 
having length exactly L, vo is a guess for v (in our case Vo = 3/4), and k 1, 
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k'~, k 2, k; are positive constants, which take into account deviations from 
(2.3) phenomenologically. We tried various values of these parameters, the 
best choice being the one that makes the result v as indepenent as possible 
of the value of Lmi n, 

Using (3.2) or (3.3), we performed a two-parameter least-squares fit; 
the results are 

v = 0.7580 _+ 0.0049 _+ 0.0046 (3.4) 

v' -- 0.7420 _+ 0.0055 _+ 0.0052 (3.5) 

The first error in (3.4) an (3.5) represents the systematic error, taken a 
equal to the difference between extreme values of v and v' obtained for 
various k and L m i  n.  The range of L~m used to determine the systematic 
error is 25-100, The central value reported corresponds to L,nm--50. The 
next error is the statistical one. It is chosen to provide 95% confidence 
limits and is computed by using L m i  n = 50 data. The method suggested in 
Ref. 4 to extract the autocorrelation time of the algorithm by checking the 
exponential decay of the autocorrelation function proved impracticably 
noisy. Therefore, we resorted to binning our results to ten bins of 30,000 
data points (i.e., 9 x 108 Monte Carlo iterations) each, which were con- 
sidered independent. 

It is worth noting that the value of v predicted by Nienhuis (v = 3/4) 
lies within one total standard deviation from both central values v and v'. 
Besides, it seems that formula (3.2) has a tendency to systematically 
overestimate v and (3.3) to underestimate it. 

3.2. Esimating p and the Exponent y 

The algorithm used produces SAWs distributed according to the 
grand canonical ensemble (2.1) at monomer activity/~; hence, 

Prob(length = L) = const x ~Lc L (3.6) 

Using relation (2.2), this expression becomes 

Prob(length = L) = const x (fl/~)LL;' 1 (3.7) 

Now, Eq. (3.7) is expected to hold only asymptotically for L ~ oo. In order 
to take into account the corrections to scaling, we introduce a 
phenomenological parameter k and we estimate the probability by the sam- 
ple probability as in (3.1). Thus, instead of (3.7), we use the relation 

p(length = L IL >>- L m i n )  = const x (fl/~)L(L + k) 7- 1 (3.8) 
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to extract information from the experimental data. N o w  we have two alter- 
natives. Either assume the correctness of Nienhuis' prediction for 
# = (2 + 21/2) 1/2 and make a one-parameter maximum likelihood fit with 3.8 
to extract 7, or make a two-parameter fit to compute  both /~ and 7. The 
two alternatives were used and the results are, respectively, 

# = (2  + 21/2) 1/2 = 1.847759... 

7 = 1.3459 +_ 0.0040 + 0.0008 
( 3 . 9 )  

and 

,u = 1.84779 +_ 0.00006 _+ 0.00017 

7 = 1.3509 + 0.0057 +_ 0.0023 
(3.1o) 

These relations must be interpreted as a confirmation of the Nienhuis  con- 
jecture. The systematic and statistical errors are computed as previously. 

For completeness,  we plot in Fig. 2 the curve ( r ~ ) +  k versus L +k' 
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Fig. 3. Plot of log[(fl#)-L IS(L)I ] versus L + k. 

on a log-log scale for k = k' = 2.5, where 2 ( r L )  is the observed mean value 
of r 2 for chains in the sample having length exactly L. In Fig. 3 we plot 
(fl#)-LIs(walks L)[ versus L + k  on a log-log scale for k = 2 .  

3.3. Estimating the Exponent a 

In principle, ~ can be estimated from (2.4) by considering a subsample 
of walks with a fixed end-to-end distance ]xl. Such a subset, however, 
proves too small for statistical purposes, and does not make use of most of 
the Monte Carlo information. Actually, the algorithm used is not the best 
one for extracting information about e; a much more efficient algorithm for 
computing this particular exponent is described in Ref. 3. 

However, in order to have some rough estimation of the exponent c~, 
we used the following trick. Instead of considering walks with fixed end-to- 
end distance Ix], we consider the set of walks with Ix] ~ rmax. 

Now, (2.4) is expected to hold only for L ~ or; therefore, we introduce 
phenomenological corrections by fitting Is(Ixl <~ rmax)l t o  the form 

I s ( ] x t ~ r m a x ) l ~ f ( x ) # L L  ~-2 for L ~ o o  (3.11) 
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where for f ( x )  we choose f ( x ) ~  x ~. The parameter  6 is adjusted to make  
the fitted value of e as independent  as possible of rm~ x. 

There is no strong a rgument  to choose this special form for f (x) ,  nor  
do we claim that  it is the best one. It is, however, plausible, since, if 
hyperscaling dv = 2 -  e is assumed, then 

and 

cz,(Ix{)/cL ~ L--a" f(lxl/LV) (3.12) 

f ( y ) ~ y ~  for y ~ 0  (3.13) 

f ( y ) ~ e x p ( - y P )  for y - ~  ~ (3.14) 

Therefore, we choose ad hoc the form 

IS(IXl ~ fmax) I ~X8[~LL . . . .  p . . . .  (3.15) 

The parameter  6 is adjusted to make the estimate of the power of L as 

independent  as possible of rma x. In  this way we obta in  

= 0.519 + 0.082 _+ 0.077 (3.16) 

r . . . .  is chosen in the range 4-12 and central  value and statistical errors are 

obta ined for 6 = 0.22 and  rma x = 8. In  this fitting procedure # and v were 
fixed to the values g = (2 + 21/2) l/2 and  v = 3/4. 

4. D I S C U S S I O N  A N D  F U R T H E R  D E V E L O P M E N T S  

The results obta ined  so far are in agreement  within less than  one stan- 
dard deviat ion with Nienhuis '  conjecture. Table  I compares different results 

Table I. Comparison of Results 

Method /~ 7 v c~ 

Extrapolation 1.8477 1.344 0.747 - -  
_+ 0.001 

Renormalization group - -  1.352 0.7603 - -  
• 0.0002 

Exact result conjectured 1.84779 1.3438 0.7500 0.5000 

Present Monte Carlo 1.84779 1.3509 0.7580 0.519 
_+ 0.00066 _+ 0.0057 _+ 0.0049 +_ 0.082 
_+_ 0.00017 • 0.0023 • 0.0046 +_ 0.077 
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in the literature. This table is not exhaustive. More complete results can be 
found in Ref. 4. We believe that these results completely support Nienhuis' 
conjecture, and provide rough numerical evidence for the first hyperscaling 
relation 

d v =  2 - ~  (4.1) 

However, we want to pursue our work to check the second hyperscaling 
relation, 

dv - 2A 4 + 7 -- 0 (4.2) 

A hyperscaling inequality of the form d v - 2 A  4 + 7  <~ 0 is established (1) for 
the two-dimensional SAW. The other half of the inequality, namely 
d v - 2 A  4 + 7 ~> 0, is not established, but is generally accepted as true. No 
proof exists generally in three dimensions. It is even believed by some 
(probably a minority) that it fails for d = 3 .  In any case, Sokal has 
proven/2~) that it fails if dv > 2, which is believed to occur for d > 4  (and 
only then). The central problem is therefore the calculation of the critical 
exponent A4. The exponent A 4 is associated with the probability of inter- 
section of two independent random walks of length L starting at different 
sites. The number dL of such intersecting walks behaves as 

dL~II2LL2Lt4+7 2 for L--* ~ (4.3) 

Calculations for A4, as well as #, v, 7, and ~, are in progress for the three- 
dimensional cubic lattice. 
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